TAN-931, A NOVEL NONSTEROIDAL AROMATASE INHIBITOR PRODUCED BY Penicillium funiculosum No. 8974
 II. STRUCTURE ELUCIDATION, CHEMICAL MODIFICATION AND BIOLOGICAL ACTIVITY

Tsuneaki Hida, Takafumi Ishil, Tsuneo Kanamaru and Masayuki Muror
Microbiology Research Laboratories, Research and Development Division,
Takeda Chemical Industries, Ltd., 2-17-85 Jusohonmachi, Yodogawa-ku, Osaka 532, Japan

(Received for publication January 16, 1991)

Abstract

The structure of TAN-931, a novel nonsteroidal aromatase inhibitor, was determined by chemical reactions and spectral analyses including 2D NMR experiments to be 4-(2,6-dihydroxybenzoyl)-3-formyl-5-hydroxybenzoic acid. Several derivatives of TAN-931 were prepared, and it was found that the 3 -formyl and 2^{\prime} - and/or 6^{\prime}-hydroxyl groups play an important role in its inhibitory activity. Among the compounds synthesized, 4-(2,6-dihydroxybenzoyl)-3-formyl-5-methoxy- N, N-dimethylbenzamide was found to be more effective than TAN- 931 when administered orally.

In the course of our screening program in search of new aromatase inhibitors of microbial origin, TAN-931 (1) was discovered in the culture filtrate of Penicillium funiculosum No. 8974. In the previous paper ${ }^{1)}$, we reported the taxonomy of the producing organism and the fermentation, isolation, characterization and biological activities of this inhibitor. We describe here the structure elucidation and chemical modification of 1 and biological activity of derivatives.

Structure Elucidation

The IR spectrum of $\mathbf{1}^{1)}$ had absorption bands at $3600 \sim 2500$ (br) and $1720 \mathrm{~cm}^{-1}$, indicating the presence of a carboxyl group, which was supported by formation of the methyl ester (2) by brief treatment of $\mathbf{1}$ with diazomethane. The UV spectrum of $\mathbf{1}^{\mathbf{1})}$ in MeOH had maxima at 223,275 and 336 nm . In alkaline solution, these shifted to 235 (sh), 275 (sh) and 385 nm , respectively.

In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ (Table 1), a singlet signal at $\delta 9.94$ suggested the presence of an aldehyde. Doublets at $\delta 8.01$ and 7.72 were coupled $(J=1.2 \mathrm{~Hz})$, and another doublet at $\delta 6.29(2 \mathrm{H}$, $J=8.2 \mathrm{~Hz}$) was coupled with a triplet at $\delta 7.28$. Phenol protons were observed at $\delta 10.42(1 \mathrm{H})$ and 11.44 $(2 \mathrm{H})$. The presence of three phenol groups was further confirmed by permethylation with dimethyl sulfate- $\mathrm{K}_{2} \mathrm{CO}_{3}$. The tetramethyl derivative (3) thus obtained contains three methoxyl groups and one methyl ester group. In the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ (Table 1), carbonyl signals at $\delta 200.0,192.0$ and 166.1 were assigned to a ketone, an aldehyde and a carboxyl group, respectively. The signals at $\delta 106.9$ and 161.8 were duplicated, and resonances for two carbons were assumed to overlap at $\delta 134.2$. These findings suggested that 1 has two aromatic rings connected by a ketone like benzophenone; one of the rings (Ring A) bears an aldehyde, a carboxylic acid and a hydroxyl group, and the other ring (Ring B) has a $2^{\prime}, 6^{\prime}$-dihydroxy-substituent. Two meta-

Fig. 1. Structure of TAN-931 (1).

Table 1. NMR chemical shifts ($\delta \mathrm{ppm}$) of TAN-931 (1) and 2.

	TAN-931 (1)		2	
	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}(J=\mathrm{Hz})$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}(\mathrm{J}=\mathrm{Hz})$
$\begin{array}{ll}\text { Ring A } & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6\end{array}$	131.8		130.5	
	124.1	8.01 d (1.2)	123.8	8.04 d (1.4)
	134.2		134.2	
	134.2		134.5	
	153.7		153.7	
	121.7	7.72 d (1.2)	121.3	7.74 d (1.4)
Ring B	110.8		110.7	
	161.8		161.7	
	106.9	$6.29 \mathrm{~d}(2 \mathrm{H}, 8.2)$	106.9	$6.30 \mathrm{~d}(2 \mathrm{H}, 8.2)$
	137.0	7.28 t (8.2)	137.0	7.28 t (8.2)
Carbonyl	200.0		199.7	
Carboxyl	166.1		165.1	
Formyl	192.0	9.94 s	191.9	9.95 s
$5-\mathrm{OH}$		10.42 br		10.50 br
$2^{\prime}, 6^{\prime}-\mathrm{OH}$		$11.44 \mathrm{br}(2 \mathrm{H})$		$11.45 \mathrm{br}(2 \mathrm{H})$
COOH		13.31 br		
OCH_{3}			52.4	3.91 s

coupled protons on Ring A were observed at $\delta 7.72$ and $8.01(J=1.2 \mathrm{~Hz})$.

Upon treatment of $\mathbf{1}$ with trifluoroacetic acid (TFA) in MeOH , a methylacetal (4) was obtained. In the ${ }^{1} \mathrm{H}$ NMR spectrum of 4 , the aldehyde proton disappeared and an acetal signal ($\delta 6.19$) together with a methoxyl signal ($\delta 3.46$) appeared. This

Fig. 2. COLOC experiment of 2 .
${ }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C}$ compound is assumed to be formed through a neighboring-group interaction between a formyl- and either 2'- or 6'-hydroxy-groups of the substituted benzophenone as in the case of arugosin ${ }^{2)}$.

2D NMR techniques (${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$-COSY ${ }^{3)}$ and correlation via long range coupling (COLOC) $\left.)^{4}\right)$ were applied to the methyl ester (2) in which the six carbon signals on Ring A were separated and easy to analyze. Connectivities from NMR experiments with COLOC linkages are shown in Fig. 2. One of the two protons on Ring A $(2-\mathrm{H} ; \delta 8.04)$ coupled to the aldehyde carbon and the carboxyl carbon, and the other proton $(6-\mathrm{H} ; \delta 7.74)$ coupled to the carboxyl carbon. These findings indicated that Ring A has 1 -carboxyl, 3 -formyl and 5 -hydroxyl groups as substituents and is connected to Ring B by the ketone at the C-4 position. Therefore, the structure of 1 was concluded to be 4 -(2,6-dihydroxybenzoyl)-3-formyl-5-hydroxybenzoic acid (Fig. 1).

Chemical Modification of $\mathbf{1}$

Chemical modification of $\mathbf{1}$ is outlined in Schemes 1,2 and 3. Besides the methyl ester (2), other ester derivatives $(5 \sim 7)$ were synthesized by reaction with alkyl halides in the presence of sodium hydrogen carbonate. Although direct reaction of $\mathbf{1}$ with methylamine easily afforded the aminoacetal (8) via cyclization of the formyl and hydroxyl groups, reaction of the methylacetal (4) with amines in the presence of dicyclohexylcarbodiimide (DCC) and 1-hydroxybenzotriazole (HOBT) and subsequent acid hydrolysis

Scheme 1.

3

$2 \mathrm{R}=\mathrm{CH}_{3}$
$5 \mathrm{R}=\mathrm{CH}_{2} \mathrm{OCH}_{3}$ (MOM)
$6 \mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$
$7 \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{13}$

$4 \mathrm{R}=\mathrm{OCH}_{3}$
$8 \mathrm{R}=\mathrm{NHCH}_{3}$

26

29

27

TAN-931 (1)

$30 \quad \mathrm{R}=\mathrm{H}$
$31 \mathrm{R}=\mathrm{CH}_{3}$

33
gave a series of amide derivatives $(9 \sim 17)$.
For the selective methylation of phenol groups, the carboxyl group of methylacetal 4 was protected as a methoxymethyl (MOM) ester (18). Monomethylation of 18 was carried out with dimethyl sulfate (l equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$, and the compound thus obtained was hydrolyzed to give monomethyl ether 19. The position of the methoxyl group should therefore be at $\mathrm{C}-5$ not at $\mathrm{C}-2^{\prime}$, since in the ${ }^{1} \mathrm{H}$ NMR spectrum the $3^{\prime}-\mathrm{H}$ and $5^{\prime}-\mathrm{H}$ protons in 19 were identical. The $\mathrm{C}-5$ phenol group in 18 was protected as a MOM ether (20), and subsequent methylation with dimethyl sulfate and deprotection with acid yielded the $2^{\prime}-O$-methyl derivative (21) whose $3^{\prime}-\mathrm{H}$ and $5^{\prime}-\mathrm{H}$ proton signals were observed individually in the ${ }^{1} \mathrm{H}$ NMR spectrum. Excess dimethyl sulfate with 18 and 5 followed by acid hydrolysis gave the $2^{\prime}, 5$-di- O-methyl

Scheme 2.

Scheme 3.

derivative (22) and the $2^{\prime}, 5,6^{\prime}$-tri- O-methyl derivative (23), respectively. Compound $\mathbf{2 4}$ was prepared by selective methylation of $\mathbf{2 5}$, which is the N, N-dimethylamide derivative of the methylacetal (4), and subsequent acid hydrolysis. Chlorination of $\mathbf{1}$ was carried out with N-chlorosuccinimide to give $\mathbf{2 6}$.

Hydrogenation of $\mathbf{1}$ over $\mathrm{Pd}-\mathrm{C}$ gave the hydroxymethyl derivative (27), and a prolonged reaction time led to the phthalan derivative $(\mathbf{2 8})^{2)}$. Oxidation of $\mathbf{1}$ with sodium chlorite in the presence of sulfamic acid ${ }^{5)}$ gave the diacid (29) which has a chlorine atom at the $\mathrm{C}-\mathbf{3}^{\prime}$ position. The aldehyde group of $\mathbf{1}$ was easily converted to oximes ($\mathbf{3 0}$ and $\mathbf{3 1}$).

Acetylation of $\mathbf{1}$ with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine gave the diacetyl derivative (32), however, the reaction in the presence of 4-dimethylaminopyridine (DMAP) led to the cyclic triacetate ($\mathbf{3 3})^{66}$.

Biological Activity and Discussion
In Table 2, the IC_{50} values of the derivatives against aromatase from human placenta are shown. Although the methyl and methoxymethyl esters ($\mathbf{2}$ and $\mathbf{5}$) were as effective as $\mathbf{1}$, esterification at the $\mathrm{C}-1$ position with hydrophobic groups (6 and 7) tended to result in diminished activity. Conversion of the carboxyl group to amides ($\mathbf{9 \sim 1 7}$) did not cause a marked change of activity even when there were hydrophobic alkyl or aryl groups on the nitrogen atom.

Table 2. Inhibitory activity of derivatives.

Compound	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	$\begin{aligned} & \mathrm{IC}_{50} \\ & (\mu \mathrm{M}) \end{aligned}$
1	OH	H	H	H	H	17
2	OCH_{3}	H	H	H	H	22
5	$\mathrm{OCH}_{2} \mathrm{OCH}_{3}$	H	H	H	H	12
6	$\mathrm{OCH}_{2} \mathrm{Ph}$	H	H	H	H	207
7	$\mathrm{OC}_{6} \mathrm{H}_{13}$	H	H	H	H	34
9	NHCH_{3}	H	H	H	H	21
10	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	H	H	H	H	15
11	$\mathrm{NHCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	H	H	H	H	15
12	$\mathrm{NHC}_{6} \mathrm{H}_{13}$	H	H	H	H	18
13	$\mathrm{NHCH}\left(\mathrm{CH}_{3}\right)_{2}$	H	H	H	H	26
14	NHp-Tolyl	H	H	H	H	16
15	$\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$	H	H	H	H	15
16		H	H	H	H	23
17		H	H	H	H	16
19	OH	CH_{3}	H	H	H	24
21	OH	H	CH_{3}	H	H	136
22	OH	CH_{3}	CH_{3}	H	H	97
23	OH	CH_{3}	CH_{3}	CH_{3}	H	>500
3	OCH_{3}	CH_{3}	CH_{3}	CH_{3}	H	>500
24	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	CH_{3}	H	H	H	18
26	OH	H	H	H	Cl	14
32	OH	Ac	Ac	H	H	16

Table 3. Effect of TAN-931 (1) on the weight of the uterus and ovaries and the plasma estradiol-17 β level in rats.

Compound	$\begin{aligned} & \text { Dose } \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	Gain of body weight (g)	Weight of		$\begin{gathered} \text { Plasma } E_{2}{ }^{a}(\mathrm{pg} / \mathrm{ml}) \end{gathered}$
			Uterus (mg)	Ovaries (mg)	
None	-	21.8 ± 1.1	27.8 ± 2.6	15.9 ± 3.0	3.3 ± 4.3
PMSG treatment	-	19.8 ± 1.6	106.7 ± 20.2	29.5 ± 2.3	224.9 ± 35.9
1 (po)	100	19.0 ± 1.9	100.6 ± 10.1	35.0 ± 4.3	246.0 ± 71.7

Mean \pm SD, $\mathrm{n}=6$.
PMSG: Pregnant more serum gonadotropin.

- Plasma estradiol- 17β level.

Table 4. Effect of TAN-931 (1) and 24 on the weight of the uterus and ovaries, the plasma estradiol-17 β level, and ovarian aromatase activity in rats.

Compound	$\begin{gathered} \text { Dose } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	Gain of body weight (g)	Weight of		$\underset{(\mathrm{pg} / \mathrm{ml})}{\text { Plasma } \mathrm{E}_{2}}$	Ovarian aromatase	
			Uterus (mg)	Ovary (mg)		Total (U/ovary)	Specific (U/mg)
None	-	12.2 ± 1.6	32.5 ± 8.8	18.4 ± 3.0	55.4 ± 7.3	3.1	62.4
PMSG treatment	-	12.2 ± 1.3	132.6 ± 11.4	38.5 ± 9.4	331.9 ± 185.7	18.3	131.2
1 (sc)	100	13.7 ± 1.9	$50.6 \pm 32.3^{* *}$	$17.8 \pm 2.9^{* *}$	$66.7 \pm 12.0^{* *}$	4.7	65.2
24 (po)	100	10.5 ± 1.4	$115.1 \pm 4.9 *$	32.4 ± 7.0	216.7 ± 73.0	12.5	109.5

Mean \pm SD, $\mathrm{n}=6$.
Student's t-test against PMSG-group, ${ }^{*} P<0.01$, ${ }^{* *} P<0.001$.
One u of aromatase activity was defined as $\mathrm{fmol}{ }^{3} \mathrm{H}_{2} \mathrm{O}$ formed/minute.
Specific activity was defined as units/mg ovarian microsomal protein.
Conversion of the aldehyde group to hydroxymethyl (27), carboxyl (29) and oxime (30 and 31) groups caused a complete loss of activity. Neither the methylacetal (4) nor the aminoacetal (8) showed any activity.

Introduction of a methyl group onto the $\mathbf{C}-5$ phenol group had little influence on activity, however, methylation of the $\mathrm{C}-2^{\prime}$ phenol group resulted in reduced activity, and methylation of both the $\mathrm{C}-2^{\prime}$ and C-6' phenol groups caused a loss of activity. These findings revealed that the 3 -formyl and 2^{\prime} - and/or 6^{\prime}-hydroxyl groups play an essential role in aromatase inhibition.

Although in in vivo experiments 1 had no effect upon oral administration at a dose of $100 \mathrm{mg} / \mathrm{kg}$ (Table 3), the N, N-dimethylamide derivative (24) was more effective (Table 4). When 24 was orally administered at a dose of $100 \mathrm{mg} / \mathrm{kg}$, the weight of the uterus was significantly reduced. Moreover, the plasma estradiol -17β level and ovarian aromatase activity were also reduced. These findings suggest that changing the carboxyl group to an amide group has the potential to increase the bioavailability of $\mathbf{1}$.

The currently known nonsteroidal aromatase inhibitors are aminoglutethimide ${ }^{7 \sim 9}$, naphthoflavone derivatives ${ }^{(0,11)}$, and imidazole derivatives ${ }^{12,13)}$, however, $\mathbf{1}$ does not belong to any of these three categories and therefore is a novel type of nonsteroidal aromatase inhibitor.

Experimental

General

MP's were uncorrected. UV spectra were taken on a Hitachi 320 spectrophotometer. IR spectra were obtained with a Hitachi 285 grating IR spectrophotometer using a KBr disk. NMR spectra were recorded on Bruker AC-300 instrument (${ }^{1} \mathrm{H}, 300 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 75 \mathrm{MHz}$): Chemical shifts (δ) are reported in ppm downfield from internal TMS in DMSO- d_{6} solutions; coupling constants are reported in Hz. Merck Silica
gel 60 was used for column chromatography.

Methyl Ester (2)

Ethereal diazomethane was added to a solution of $1(50 \mathrm{mg}, 0.17 \mathrm{mmol})$ in THF (2 ml), and the solution was allowed to stand for 10 minutes at room temperature. The reaction mixture was concentrated, and the resulting residue was chromatographed on Sephadex $\mathrm{LH}-20$ eluting with MeOH . The pure fraction was concentrated and crystallized from EtOAc - hexane to give 2 as yellow crystals ($40 \mathrm{mg}, 76 \%$): MP $173.5 \sim 175^{\circ} \mathrm{C}$; IR $v_{\max } \mathrm{cm}^{-1} 1720,1630,1595$.

Anal Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{7}: \quad \mathrm{C} 60.76, \mathrm{H} 3.82$.
Found: \quad C 60.72, H 3.78 .

Tetramethyl Derivative (3)

Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(500 \mathrm{mg}, 3.6 \mathrm{mmol})$ and dimethyl sulfate $(0.5 \mathrm{ml}, 5.3 \mathrm{mmol})$ were added to a suspension of $1(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}(2 \mathrm{ml})$. The reaction mixture was refluxed for 2 hours with stirring, and the solid residue was removed by filtration. The filtrate was concentrated and the residue was triturated with ethyl ether to give a powder. The powder was dissolved in EtOAc (20 ml), washed with water and concentrated. The residue was crystallized from EtOAc to give 3 as pale yellow crystals (91 mg , $77 \%)$: MP $166 \sim 167^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.62(6 \mathrm{H}, \mathrm{s}), 3.71(3 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}, \mathrm{s}), 6.71(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.42$ $(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 8.00(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 9.96(1 \mathrm{H}, \mathrm{s}) ; \mathrm{IR} v_{\max } \mathrm{cm}^{-1} 1730,1690$, 1600.

$$
\begin{array}{cc}
\text { Anal Calcd for } \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{7}: & \text { C 63.68, H } 5.06 . \\
\text { Found: } & \text { C } 63.80, \text { H } 5.06 .
\end{array}
$$

Methylacetal (4)

TFA ($0.1 \mathrm{ml}, 1.3 \mathrm{mmol}$) was added to a solution of $1(50 \mathrm{mg}, 0.17 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{ml})$, and the solution was stirred for 30 minutes at room temperature. The reaction mixture was concentrated to give crude crystals. Recrystallization from MeOH gave yellow crystals of $4(42 \mathrm{mg}, 80 \%)$: MP $268 \sim 271^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\delta 3.46(3 \mathrm{H}, \mathrm{s}), 6.19(1 \mathrm{H}, \mathrm{s}), 6.63(1 \mathrm{H}, \mathrm{dd}, J=8.2$ and 1.0 Hz$), 6.68(1 \mathrm{H}, \mathrm{dd}, J=8.2$ and $1.0 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 10.59(1 \mathrm{H}, \mathrm{br}), 12.12$ $(1 \mathrm{H}, \mathrm{brs})$; IR $v_{\max } \mathrm{cm}^{-1} 1720,1630,1595$.
$\begin{array}{cl}\text { Anal Caled for } \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{7}: & \mathrm{C} 60.76, \mathrm{H} 3.82 . \\ \text { Found: } & \text { C } 60.76, \mathrm{H} 3.77 .\end{array}$

Methoxymethyl Ester (5)

$\mathrm{NaHCO}_{3}(1.12 \mathrm{~g}, 13 \mathrm{mmol})$ and methoxymethyl chloride ($380 \mu \mathrm{l}, 5.0 \mathrm{mmol}$) were added to a solution of $1(1.00 \mathrm{~g}, 3.3 \mathrm{mmol})$ in DMF $(10 \mathrm{ml})$. The mixture was stirred at room temperature for 1 hour and diluted with EtOAc (50 ml). The mixture was washed with 1 N hydrochloric acid, water and brine (20 ml). The organic layer was dried and the solvent was removed. The residue was chromatographed on silica gel, eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(20: 1)$, to give 810 mg (73%) of 5 as yellow crystals (from EtOAchexane): MP $143 \sim 145^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.49(3 \mathrm{H}, \mathrm{s}), 5.50(2 \mathrm{H}, \mathrm{s}), 6.30(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{t}$, $J=8.2 \mathrm{~Hz}), 7.78(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 9.97(1 \mathrm{H}, \mathrm{s}), 10.52(1 \mathrm{H}, \mathrm{brs}), 11.44(2 \mathrm{H}$, brs); IR $v_{\text {max }} \mathrm{cm}^{-1} 1730,1630$.

Anal Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{8}$: C 58.96, H 4.07.
Found: \quad C 59.02, H 4.08 .
In a similar manner using benzyl bromide and n-hexyl iodide, compounds 6 and 7 , respectively, were prepared from 1.

6: Yield 83%; yellow crystals (from EtOAc-hexane); mp $184.5 \sim 186{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 5.41(2 \mathrm{H}, \mathrm{s}), 6.29$ $(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.35 \sim 7.55(5 \mathrm{H}, \mathrm{m}), 7.78(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 8.07(1 \mathrm{H}, \mathrm{d}$, $J=1.4 \mathrm{~Hz}), 9.96(1 \mathrm{H}, \mathrm{s}), 10.51(1 \mathrm{H}, \mathrm{br}), 11.45(2 \mathrm{H}, \mathrm{br}) ;$ IR $v_{\max } \mathrm{cm}^{-1} 1730,1630$.

Anal Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{O}_{7}: \quad \mathrm{C} 67.35, \mathrm{H} 4.11$.
Found: \quad C 67.15, H 4.29 .
7: Yield 69%; yellow crystals (from EtOAc-hexane); mp $129.5 \sim 130^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.89(3 \mathrm{H}$, brt, $J=7.0 \mathrm{~Hz}), 1.2 \sim 1.5(6 \mathrm{H}, \mathrm{m}), 1.74(2 \mathrm{H}, \mathrm{m}), 4.32(2 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 6.30(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{t}$, $J=8.2 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 8.02(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 9.95(1 \mathrm{H}, \mathrm{s}), 10.47(1 \mathrm{H}, \mathrm{br}), 11.43(2 \mathrm{H}, \mathrm{br}) ;$

IR $v_{\max } \mathrm{cm}^{-1} 1730,1625$.
Anal Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{7}: \quad \mathrm{C} 65.28, \mathrm{H} 5.74$.
Found: \quad C 64.98, H 6.05.
Compound 18 was prepared in a similar manner using 4 and methoxymethyl chloride.
18: Yield 77%; yellow crystals (from EtOAc-hexane); mp $135.5 \sim 136{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.47(3 \mathrm{H}, \mathrm{s})$, $3.48(3 \mathrm{H}, \mathrm{s}), 5.47(2 \mathrm{H}, \mathrm{s}), 6.22(1 \mathrm{H}, \mathrm{s}), 6.63(1 \mathrm{H}, \mathrm{dd}, J=8.2$ and 1.1 Hz$), 6.68(1 \mathrm{H}, \mathrm{dd}, J=8.2$ and 1.1 Hz$)$, $7.50(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 10.65(1 \mathrm{H}, \mathrm{br}), 12.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;$ IR $v_{\max } \mathrm{cm}^{-1} 1735,1625$.

$$
\begin{array}{ll}
\text { Anal Caled for } \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{8}: & \mathrm{C} 60.00, \mathrm{H} 4.48 . \\
\text { Found: } & \text { C } 60.30, \mathrm{H} 4.58 .
\end{array}
$$

Aminoacetal (8)

Methylamine hydrochloride ($24.6 \mathrm{mg}, 0.36 \mathrm{mmol}$) and triethylamine (TEA, $49 \mu \mathrm{l}, 0.35 \mathrm{mmol}$) were added to a solution of $1(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{DMF}(1.0 \mathrm{ml})$. The mixture was stirred at room temperature for 15 minutes, poured into water $(20 \mathrm{ml})$ and extracted with EtOAc $(3 \times 30 \mathrm{ml})$ at pH 3.0 . The organic layers were combined and washed with water and brine. After concentration, the residue was crystallized from EtOAc to give 8 as colorless crystals ($89 \mathrm{mg}, 85 \%$): MP $100^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $\delta 2.74(3 \mathrm{H}, \mathrm{s}), 6.03$ $(1 \mathrm{H}, \mathrm{s}), 6.05(1 \mathrm{H}$, brd, $J=8.1 \mathrm{~Hz}), 6.39(1 \mathrm{H}$, brd, $J=8.1 \mathrm{~Hz}), 6.87(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{d}$, $J=1.3 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 8.79(1 \mathrm{H}, \mathrm{s}), 9.74(1 \mathrm{H}, \mathrm{br}) ;$ IR $v_{\max } \mathrm{cm}^{-1} 1695,1650,1600$.
$\begin{array}{cl}\text { Anal Caled for } \mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{6} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}: & \mathrm{C} 59.26, \mathrm{H} 4.35, \mathrm{~N} 4.32 . \\ \text { Found: } & \text { C } 59.18, \mathrm{H} 4.41, \mathrm{~N} 4.34 .\end{array}$

Methylamide (9)

Methylamine hydrochloride ($93 \mathrm{mg}, 1.4 \mathrm{mmol}$), TEA ($195 \mu \mathrm{l}, 1.4 \mathrm{mmol}$), HOBT ($187 \mathrm{mg}, 1.4 \mathrm{mmol}$) and DCC ($284 \mathrm{mg}, 1.4 \mathrm{mmol}$) were added to a solution of $4(400 \mathrm{mg}, 1.3 \mathrm{mmol})$ in DMF $(4.0 \mathrm{ml})$. The reaction mixture was stirred at room temperature for 2 hours and then diluted with EtOAc (60 ml). The mixture was filtered, and the filtrate was washed successively with $2 \% \mathrm{aq} \mathrm{NaHCO}_{3}, 1 \mathrm{~N}$ hydrochloric acid, water and brine. The organic layer was concentrated and the crystalline ressidue was dissolved in THF $(8 \mathrm{ml})$ and 1 N hydrochloric acid (2 ml). The mixture was stirred at $50^{\circ} \mathrm{C}$ for 16 hours, diluted with EtOAc $(100 \mathrm{ml})$, and washed with water and brine. The organic solution thus obtained was dried and concentrated. The residue was crystallized from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ to give 9 ($193 \mathrm{mg}, 48 \%$) as yellow crystals: MP $222 \sim 226^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $\delta 2.81(3 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 6.29(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz})$, $7.60(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 8.63(1 \mathrm{H}, \mathrm{q}, J=4.5 \mathrm{~Hz}), 9.89(1 \mathrm{H}, \mathrm{s}), 10.27(1 \mathrm{H}, \mathrm{br})$, $11.44(2 \mathrm{H}, \mathrm{br})$; IR $v_{\max } \mathrm{cm}^{-1} 1625$.

Anal Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{6}$: $\mathrm{C} 60.95, \mathrm{H} 4.16, \mathrm{~N} 4.44$.
Found: $\quad \mathrm{C} 60.78, \mathrm{H} 4.17$, N 4.44.
Compounds $10 \sim 17$ were prepared from $\mathbf{4}$ in a manner similar to that used for the preparation of 9 .
10: Yield 75%; yellow crystals (from EtOAc-hexane); mp $198 \sim 200^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.97(3 \mathrm{H}, \mathrm{brs}$), $3.01(3 \mathrm{H}, \mathrm{brs}), 6.29(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.47(1 \mathrm{H}, \mathrm{d}$, $J=1.3 \mathrm{~Hz}), 9.87(1 \mathrm{H}, \mathrm{s}), 10.30(1 \mathrm{H}, \mathrm{br}), 11.47(2 \mathrm{H}, \mathrm{br}) ;$ IR $v_{\max } \mathrm{cm}^{-1} 1685,1625$.

Anal Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{6}: \quad \mathrm{C} 62.00, \mathrm{H} 4.59, \mathrm{~N} 4.25$.
Found: \quad C 62.12, H 4.81, N 4.40 .
11: Yield 64%; yellow crystals (from EtOAc-hexane); mp $173 \sim 174^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.93(2 \mathrm{H}$, $\mathrm{m}), 5.12(1 \mathrm{H}, \mathrm{dq}, J=10.2$ and 1.6 Hz$), 5.19(1 \mathrm{H}, \mathrm{dq}, J=17.2$ and 1.6 Hz$), 5.91(1 \mathrm{H}, \mathrm{ddt}, J=17.2,10.2$ and 5.1 Hz$), 6.29(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.63(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 7.95(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz})$, $8.86(1 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}), 9.89(1 \mathrm{H}, \mathrm{s}), 10.30(1 \mathrm{H}, \mathrm{br}), 11.44(2 \mathrm{H}, \mathrm{br}) ;$ IR $\nu_{\max } \mathrm{cm}^{-1} 1625$.

Anal Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{6}:$ C $63.34, \mathrm{H} 4.43, \mathrm{~N} 4.10$.
Found: $\quad \mathrm{C} 63.36, \mathrm{H} 4.56, \mathrm{~N} 4.18$.
12: Yield 64%; pale yellow crystals (from CHCl_{3}); mp $217 \sim 221^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.88(3 \mathrm{H}$, br t, $J=6.7 \mathrm{~Hz}), 1.30(6 \mathrm{H}, \mathrm{m}), 1.54(2 \mathrm{H}, \mathrm{m}), 3.27(2 \mathrm{H}, \mathrm{m}), 6.29(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz})$, $7.60(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 7.90(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 8.65(1 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}), 9.89(1 \mathrm{H}, \mathrm{s}), 10.29(1 \mathrm{H}, \mathrm{br}), 11.44$ ($2 \mathrm{H}, \mathrm{br}$); IR $\nu_{\max } \mathrm{cm}^{-1} 1695,1630$.

Anal Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{6}: \mathrm{C} 65.44, \mathrm{H} 6.01, \mathrm{~N} 3.63$.
Found:
C 65.04, H $5.75, \mathrm{~N} 3.74$.

13: Yield 73%; yellow crystals (from EtOAc-hexane); mp $224 \sim 227^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\delta 1.19(6 \mathrm{H}$, $\mathrm{d}, J=6.6 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{m}), 6.29(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 7.91$ $(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 8.43(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 9.89(1 \mathrm{H}, \mathrm{s}), 10.25(1 \mathrm{H}, \mathrm{br}), 11.43(2 \mathrm{H}, \mathrm{br}) ; \mathrm{IR} v_{\max } \mathrm{cm}^{-1}$ 1690, 1630.
$\begin{array}{ll}\text { Anal Calcd for } \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{6}: & \text { C } 62.97, \text { H } 4.99, \mathrm{~N} 4.08 . \\ \text { Found: } & \text { C } 62.68, \mathrm{H} 5.12, \mathrm{~N} 3.96 .\end{array}$
14: Yield 57%; yellow crystals (from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$); mp $226 \sim 229^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\delta 2.30(3 \mathrm{H}$, br s) , $6.31(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.18(2 \mathrm{H}, \mathrm{brd}, J=8.4 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.67(2 \mathrm{H}, \operatorname{brd}, J=8.4 \mathrm{~Hz})$, $7.68(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 9.95(1 \mathrm{H}, \mathrm{s}), 10.30(1 \mathrm{H}, \mathrm{br}), 10.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 11.45(2 \mathrm{H}$, br); IR $v_{\text {max }} \mathrm{cm}^{-1} 1670,1620,1600$.

Anal Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{NO}_{6}:$ C $67.52, \mathrm{H} 4.38, \mathrm{~N} 3.58$.
Found: \quad C 67.18, H 4.20, N 3.52.
15: Yield 60%; yellow powder; ${ }^{1} \mathrm{H}$ NMR $\delta 2.84(6 \mathrm{H}, \mathrm{s}), 3.28(2 \mathrm{H}, \mathrm{brt}, J=6.0 \mathrm{~Hz}), 3.66(2 \mathrm{H}, \mathrm{brq}$, $J=5.8 \mathrm{~Hz}), 6.33(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}), 7.67(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 8.02(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz})$, $9.01(1 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}), 9.90(1 \mathrm{H}, \mathrm{s}), 10.16(1 \mathrm{H}, \mathrm{br}), 10.42(1 \mathrm{H}, \mathrm{br}), 11.45(2 \mathrm{H}, \mathrm{br}) ;$ IR $v_{\max } \mathrm{cm}^{-1} 1700,1625$.

Anal Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{HCl} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C} 54.62, \mathrm{H} 5.31, \mathrm{~N} 6.70, \mathrm{Cl} 8.48$.
Found:
C 54.73 , H 5.43 , N $6.66, \mathrm{Cl} 8.40$.
16: Yield 72%; yellow crystals (from EtOAc-hexane); mp $200 \sim 202^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\delta 1.88(4 \mathrm{H}$, $\mathrm{m}), 3.47(4 \mathrm{H}, \mathrm{m}), 6.28(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{d}$, $J=1.4 \mathrm{~Hz}), 9.88(1 \mathrm{H}, \mathrm{s}), 10.27(1 \mathrm{H}, \mathrm{br}), 11.47(2 \mathrm{H}, \mathrm{br}) ; \operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1} 1680,1620$.

Anal Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{6}$: $\mathrm{C} 64.22, \mathrm{H} 4.82, \mathrm{~N} 3.94$.
Found: \quad C $63.78, \mathrm{H} 4.69$, N 3.85 .
17: Yield 67%; yellow crystals (from EtOAc-hexane); mp $100 \sim 140^{\circ} \mathrm{C}$ (no well-defined); ${ }^{1} \mathrm{H}$ NMR $\delta 3.3 \sim 3.8(8 \mathrm{H}, \mathrm{br}), 6.28(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.48(1 \mathrm{H}, \mathrm{d}$, $J=1.4 \mathrm{~Hz}), 9.88(1 \mathrm{H}, \mathrm{s}), 10.32(1 \mathrm{H}, \mathrm{br}), 11.47(2 \mathrm{H}, \mathrm{br}) ;$ IR $v_{\max } \mathrm{cm}^{-1} 1620$.

Anal Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{7}$: $\quad \mathrm{C} 61.45, \mathrm{H} 4.61, \mathrm{~N} 3.77$.
Found: \quad C 61.16, H 4.71, N 3.55 .

5-O-Methyl Derivative (19)

Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(42 \mathrm{mg}, 0.30 \mathrm{mmol})$ and dimethyl sulfate ($29 \mu \mathrm{l}, 0.31 \mathrm{mmol}$) were added to a suspension of $18(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}(2.0 \mathrm{ml})$. After refluxing for 30 minutes, the reaction mixture was filtered, and the filtrate was concentrated to give a crystalline residue. The residue was hydrolyzed with acid by a method similar to that used in the preparation of 9 to afford $19(65 \mathrm{mg}, 74 \%)$ as pale yellow crystals (from EtOAc-hexane): MP $210^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $\delta 3.82(3 \mathrm{H}, \mathrm{s}), 6.30(2 \mathrm{H}, \mathrm{d}$, $J=8.2 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.84(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 8.18(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 9.98(1 \mathrm{H}, \mathrm{s}), 11.42$ ($2 \mathrm{H}, \mathrm{br}$); IR $v_{\text {max }} \mathrm{cm}^{-1} 1700,1635,1600$.

Anal Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{7}: ~ \mathrm{C} 60.76, \mathrm{H} 3.82$.
Found: \quad C 60.60, H 3.87.

2'-O-Methyl Derivative (21)

Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(127 \mathrm{mg}, 0.92 \mathrm{mmol})$ and methoxymethyl chloride ($70 \mu \mathrm{l}, 0.92 \mathrm{mmol}$) were added to a solution of $18(300 \mathrm{mg}, 0.83 \mathrm{mmol})$ in DMF $(3.0 \mathrm{ml})$. The reaction mixture was stirred at room temperature for 1 hour and diluted with EtOAc $(30 \mathrm{ml})$. The mixture was washed with 1 N hydrochloric acid, water and brine, dried and concentrated. The crystalline residue was chromatographed on silica gel, eluting with hexane - EtOAc (4:1). The pure fraction was concentrated and crystallized from EtOAc hexane to yield $20(273 \mathrm{mg}, 81 \%)$ as yellow crystals: MP $89.5 \sim 90^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.39(3 \mathrm{H}, \mathrm{s}), 3.48$ $(3 \mathrm{H}, \mathrm{s}), 3.49(3 \mathrm{H}, \mathrm{s}), 5.30(2 \mathrm{H}, \mathrm{s}), 5.49(2 \mathrm{H}, \mathrm{s}), 6.30(1 \mathrm{H}, \mathrm{s}), 6.62(1 \mathrm{H}, \mathrm{dd}, J=8.2$ and 1.1 Hz$), 6.67(1 \mathrm{H}$, dd, $J=8.2$ and 1.1 Hz$), 7.48(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.84(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 7.89(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 11.60$ ($1 \mathrm{H}, \mathrm{br}$); IR $v_{\text {max }} \mathrm{cm}^{-1} 1730,1635,1615$.

Anal Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{9}$: C 59.41, H 4.99.
Found: $\quad \mathrm{C} 59.41, \mathrm{H} 4.96$.
Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(103 \mathrm{mg}, 0.75 \mathrm{mmol})$ and dimethyl sulfate ($70 \mu \mathrm{l}, 0.74 \mathrm{mmol}$) were added to a solution of $20(100 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}(2.0 \mathrm{ml})$. The reaction mixture was refluxed for 1 hour and filtered. The filtrate was concentrated and the crystalline residue thus obtained was dissolved in THF and

1 N hydrochloric acid $(4: 1,2.5 \mathrm{ml})$. The solution was reffuxed for 18 hours. The reaction mixture was then worked up in the usual manner to afford $21(51 \mathrm{mg}, 65 \%)$ as pale yellow crystals (from EtOAc): MP $217 \sim 217.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.32(3 \mathrm{H}, \mathrm{s}), 6.45(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 0.8 Hz$), 6.59(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 0.8 Hz$)$, $7.45(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 8.02(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 9.92(1 \mathrm{H}, \mathrm{s}), 10.50(1 \mathrm{H}, \mathrm{br}), 12.56$ $(1 \mathrm{H}, \mathrm{br}) ; \mathrm{IR} v_{\max } \mathrm{cm}^{-1} 1700,1620$.

```
Anal Calcd for \(\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{7}:\) C \(60.76, \mathrm{H} 3.82\).
    Found: \(\quad\) C 60.71, H 3.99 .
```


$2^{\prime}, 5-\mathrm{Di}$ - O-methyl Derivative (22)

Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(150 \mathrm{mg}, 1.1 \mathrm{mmol})$ and dimethyl sulfate ($132 \mu \mathrm{l}, 1.4 \mathrm{mmol}$) were added to a suspension of $18(100 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}(2.0 \mathrm{ml})$. The reaction mixture was refluxed for 2 hours and filtered. The filtrate was concentrated and the resulting residue was hydrolyzed in the usual manner to give 22 ($81 \mathrm{mg}, 88 \%$) as pale yellow crystals (from EtOAc): MP $264 \sim 266^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\delta 3.30$ $(3 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 6.45(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and 0.8 Hz$), 6.60(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and 0.8 Hz$), 7.46(1 \mathrm{H}, \mathrm{t}$, $J=8.4 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 8.19(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 9.97(1 \mathrm{H}, \mathrm{s}), 12.50(1 \mathrm{H}, \mathrm{s}) ; \mathrm{IR} v_{\max } \mathrm{cm}^{-1}$ 1695, 1630, 1600.

Anal Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{7}: \quad$ C $61.82, \mathrm{H} 4.27$.
Found: \quad C 61.66, H 4.32 .

$2^{\prime}, 5,6^{\prime}$-Tri- O-methyl Derivative (23)

Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(400 \mathrm{mg}, 2.9 \mathrm{mmol})$ and dimethyl sulfate ($275 \mu \mathrm{l}, 2.9 \mathrm{mmol}$) were added to a solution of $5(100 \mathrm{mg}, 0.29 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO}(2.0 \mathrm{ml})$. The reaction mixture was refluxed for 2 hours and filtrated. The filtrate was concentrated to give a crystalline residue. The residue was hydrolyzed in the usual manner to give 23 ($56 \mathrm{mg}, 54 \%$) as colorless crystals (from EtOAc-hexane): MP $197 \sim 200^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\delta 3.62(6 \mathrm{H}, \mathrm{s}), 3.70(3 \mathrm{H}, \mathrm{s}), 6.71(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 7.98$ $(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 9.95(1 \mathrm{H}, \mathrm{s})$; IR $v_{\max } \mathrm{cm}^{-1} 1710,1600$.

Anal Caled for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{7}: \quad \mathrm{C} 62.79, \mathrm{H} 4.68$.
Found: \quad C 62.57, H 4.67 .

Compound 24

Compound 4 ($400 \mathrm{mg}, 1.3 \mathrm{mmol}$) was treated with dimethylamine hydrochloride, TEA, DCC and HOBT by the same method as that used to prepare $\mathbf{1 0}$. The residue was chromatographed on silica gel, eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(40: 1)$. The pure fraction was concentrated, and the residue was crystallized from EtOAc to give yellow crystals of $25(360 \mathrm{mg}, 83 \%)$: MP $170 \sim 171^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR} \delta 2.91(3 \mathrm{H}, \mathrm{brs})$, $2.99(3 \mathrm{H}$, br s $), 3.45(3 \mathrm{H}, \mathrm{s}), 6.10(1 \mathrm{H}, \mathrm{s}), 6.63(1 \mathrm{H}, \mathrm{dd}, J=8.2$ and 1.1 Hz$), 6.67(1 \mathrm{H}, J=8.2$ and 1.1 Hz$)$, $6.99(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 7.06(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 10.51(1 \mathrm{H}, \mathrm{br}) ;$ IR $v_{\max } \mathrm{cm}^{-1}$ 1630, 1580.

$$
\begin{array}{ll}
\text { Anal Calcd for } \mathrm{C}_{18} \mathrm{H}_{17}, \mathrm{NO}_{6}: & \text { C } 62.97, \mathrm{H} 4.99, \mathrm{~N} 4.08 . \\
\text { Found: } & \text { C } 62.74, \mathrm{H} 5.27, \mathrm{~N} 4.37 .
\end{array}
$$

Compound 25 ($300 \mathrm{mg}, 0.88 \mathrm{mmol}$) was methylated and hydrolyzed with acid by the same method as that used to prepare 19 to give $24\left(257 \mathrm{mg}, 86 \%\right.$) as yellow crystals (from EtOAc-hexane): MP $194 \sim 196^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR $\delta 2.98(3 \mathrm{H}, \mathrm{brs}), 3.04(3 \mathrm{H}, \mathrm{brs}), 3.78(3 \mathrm{H}, \mathrm{s}), 6.29(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{t}$, $J=8.2 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 9.91(1 \mathrm{H}, \mathrm{s}), 11.46(2 \mathrm{H}, \mathrm{br}) ;$ IR $v_{\max } \mathrm{cm}^{-1}$ 1710, 1625.

Anal Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{6}: \quad \mathrm{C} 62.97, \mathrm{H} 4.99, \mathrm{~N} 4.08$.
Found: \quad C 62.71, H 5.08, N 3.98.

Chlorination of 1, Compound 26

N -Chlorosuccinimide ($48.6 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added to a solution of $1(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ in DMF $(1.0 \mathrm{ml})$ and 1 N hydrochloric acid $(0.2 \mathrm{ml})$. The mixture was stirred at room temperature for 1 hour and diluted with EtOAc (30 ml). The solution was washed successively with water and brine, dried and concentrated to give crystals. Recrystallization from EtOAc - hexane afforded orange crystals of 26 (96 mg , 86%): MP $213 \sim 216^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.26(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}$, $J=1.3 \mathrm{~Hz}), 8.03(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 9.94(1 \mathrm{H}, \mathrm{s}), 10.50(1 \mathrm{H}, \mathrm{br}), 10.71(1 \mathrm{H}, \mathrm{br}), 13.02(1 \mathrm{H}, \mathrm{br}), 13.32(1 \mathrm{H}$,
br); IR $\nu_{\max } \mathrm{cm}^{-1} 1710,1615$.
Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{7} \mathrm{Cl} \cdot \frac{1}{4} \mathrm{H}_{2} \mathrm{O}: ~ \mathrm{C} 52.80, \mathrm{H} 2.81, \mathrm{Cl} 10.39$. Found:

C $52.96, \mathrm{H} 2.75, \mathrm{Cl} 9.95$.

Hydrogenation of 1, Compound 27

A solution of $1(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{ml})$ was hydrogenated over $10 \% \mathrm{Pd}-\mathrm{C}(10 \mathrm{mg})$ under an atmosphere of hydrogen at room temperature for 3 hours. The mixture was filtered and the filtrate was concentrated to give a yellow powder of $27(57 \mathrm{mg}, 57 \%) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.37(2 \mathrm{H}, \mathrm{s}), 5.23(1 \mathrm{H}$, br), $6.29(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.55(1 \mathrm{H}, \mathrm{brs}), 9.81(1 \mathrm{H}, \mathrm{br}), 11.45$ $(2 \mathrm{H}, \mathrm{br}), 12.80(1 \mathrm{H}, \mathrm{br})$; IR $v_{\max } \mathrm{cm}^{-1} 1705,1630$.

Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{7} \cdot \frac{1}{4} \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C} 58.35, \mathrm{H} 4.08$.
Found: \quad C 58.46, H 4.14.

Hydrogenation of 1 , Compound 28

A solution of $\mathbf{1}(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ was hydrogenated over $10 \% \mathrm{Pd}-\mathrm{C}(100 \mathrm{mg})$ under an atmosphere of hydrogen at room temperature for 23 hours. The mixture was filtered and the filtrate was concentrated. The oily residue was chromatographed on silica gel, eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}(20: 2: 1)$. The pure fraction was concentrated and crystallized from EtOAc-hexane to afford colorless needles of 28 $(32 \mathrm{mg}, 34 \%): 215^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $\delta 4.98(1 \mathrm{H}, \mathrm{brd}, J=11.8 \mathrm{~Hz}), 5.20(1 \mathrm{H}, \mathrm{dd}, J=11.8$ and 3.0 Hz), $6.18(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.66(1 \mathrm{H}$, br d, $J=3.0 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.25(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $9.17(2 \mathrm{H}, \mathrm{br}), 12.45(1 \mathrm{H}, \mathrm{br})$; IR $v_{\max } \mathrm{cm}^{-1} 1700,1600$.

Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{6} \cdot \frac{1}{5} \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{C} 61.73$, H 4.28.
Found: \quad C 61.82, H 4.41 .

Oxidation of 1, Compound 29

Sulfamic acid ($193 \mathrm{mg}, 2.0 \mathrm{mmol}$) and sodium chlorite ($33 \mathrm{mg}, 0.37 \mathrm{mmol}$) were added to a solution of $1(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ in dioxane $(2.0 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{ml})$. The mixture was stirred at room temperature for 30 minutes and diluted with water (5 ml). The mixture was extracted with EtOAc, and the organic layer was washed with water, dried and concentrated. The residue was crystallized from EtOAc-hexane to yield pale yellow needles of $29(82 \mathrm{mg}, 70 \%)$: MP $230 \sim 231^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $\delta 6.26(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$, $7.43(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.62(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 7.95(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 10.30(1 \mathrm{H}, \mathrm{br}), 10.68(1 \mathrm{H}, \mathrm{br})$, $13.14(2 \mathrm{H}, \mathrm{br})$; IR $v_{\max } \mathrm{cm}^{-1} 1700,1620$.

Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{8} \mathrm{Cl}: \mathrm{C} 51.08, \mathrm{H} 2.57, \mathrm{Cl} 10.05$. Found: $\quad \mathrm{C} 51.17, \mathrm{H} 2.62, \mathrm{Cl} 9.07$.

Oxime (30)

Hydroxylamine hydrochloride ($25 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added to a cooled solution of $1(100 \mathrm{mg}$, 0.33 mmol) in pyridine (2.0 ml). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes and concentrated. The residue was suspended in EtOAc $(20 \mathrm{ml})$ and washed with 1 N hydrochloric acid and brine. The organic layer was dried and concentrated to give an oily residue. The residue was chromatographed on silica gel, eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}(20: 2: 1)$. The pure fraction was concentrated to afford $\mathbf{3 0}(71 \mathrm{mg}$, 68%) as yellow green crystals: MP $90 \sim 110^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H} \operatorname{NMR} 86.29(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{t}$, $J=8.2 \mathrm{~Hz}), 7.42(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 7.70(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}), 10.05\left(1 \mathrm{H}\right.$, br), $11.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ;$ IR $v_{\max }$ $\mathrm{cm}^{-1} 1700,1630$.

Anal Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{7} \cdot 1 \frac{1}{2} \mathrm{H}_{2} \mathrm{O}: \quad$ C $52.33, \mathrm{H} 4.10, \mathrm{~N} 4.07$.

$$
\text { Found: } \quad \text { C } 52.23, \mathrm{H} 3.51, \mathrm{~N} 4.39
$$

O-Methyl oxime (31) was prepared in a manner similar to that used for the preparation of $\mathbf{3 0}$.
31: Yield 71%; pale yellow powder; ${ }^{1} \mathrm{H}$ NMR $\delta 3.69(3 \mathrm{H}, \mathrm{s}), 6.29(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{t}$, $J=8.2 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 7.70(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 7.99(1 \mathrm{H}, \mathrm{s}), 10.28(1 \mathrm{H}, \mathrm{br}), 11.38(2 \mathrm{H}, \mathrm{br}) ;$ IR $v_{\text {max }} \mathrm{cm}^{-1} 1700,1630$.

Anal Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{7}:$ C $58.01, \mathrm{H} 3.96, \mathrm{~N} 4.23$.
Found: \quad C 58.33, H 3.99, N 4.27.

Acetylation of 1, Compound 32

A solution of $1(300 \mathrm{mg}, 0.99 \mathrm{mmol})$ in pyridine $(3.0 \mathrm{ml})$ and acetic anhydride (1.5 ml) was stirred at room temperature for 3 hours. The mixture was diluted with EtOAc (50 ml) and washed successively with 3 N hydrochloric acid, water and brine. The organic layer was dried and concentrated to give an oily residue. The residue was chromatographed on silica gel, eluting with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(100: 1)$ and the pure fraction was concentrated and crystallized from EtOAc-hexane to afford $\mathbf{3 2}$ as pale yellow crystals $(253 \mathrm{mg}, 66 \%)$: MP $167 \sim 168^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.97(3 \mathrm{H}, \mathrm{s}), 1.99(3 \mathrm{H}, \mathrm{s}), 6.68(1 \mathrm{H}, \mathrm{brd}, J=8.2 \mathrm{~Hz}), 6.79$ $(1 \mathrm{H}, \operatorname{brd}, J=8.2 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 8.06(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 8.41(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}), 10.00$ $(1 \mathrm{H}, \mathrm{s}), 10.83(1 \mathrm{H}, \mathrm{brs}), 13.70(1 \mathrm{H}, \mathrm{br}) ; \mathrm{IR} \nu_{\max } \mathrm{cm}^{-1} 1780,1700,1630,1605$.

Anal Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{9}$: C 59.07, H 3.65.
Found: \quad C 59.14, H 3.66.

Acetylation of 1, Compound $\mathbf{3 3}$

DMAP ($60 \mathrm{mg}, 0.49 \mathrm{mmol}$) was added to a solution of $1(300 \mathrm{mg}, 0.99 \mathrm{mmol})$ in pyridine (3.0 ml) and acetic anhydride (1.5 ml), and the mixture was stirred at room temperature for 24 hours. The mixture was treated in a manner similar to that used for the preparation of $\mathbf{3 2}$ to give $\mathbf{3 3}(203 \mathrm{mg}, 48 \%)$ as colorless crystals: MP $211 \sim 213.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.02(3 \mathrm{H}, \mathrm{s}), 2.28(3 \mathrm{H}, \mathrm{s}), 2.31(3 \mathrm{H}, \mathrm{s}), 6.95(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and $1.1 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{dd}, J=8.3$ and 1.1 Hz$), 7.41(1 \mathrm{H}, \mathrm{s}), 7.59(1 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}), 7.85(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz})$, $8.23(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz})$; IR $v_{\max } \mathrm{cm}^{-1} 1770,1750,1705,1690,1610$.

$$
\begin{array}{ll}
\text { Anal Calcd for } \mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{10}: & \text { C } 58.88, \text { H } 3.76 . \\
\text { Found: } & \text { C } 58.97, \text { H } 3.72 .
\end{array}
$$

Biological Activities

In vitro and in vivo experiments were performed following the method described in the previous paper ${ }^{1)}$.

Acknowledgment

We are grateful to Drs. Y. Sugino, M. Nishikawa and H. Okazaki for their encouragement throughout this work.

References

1) Ishif, T.; T. Hida, T. Ishimaru, S. Iinuma, K. Sudo, M. Muroi, T. Kanamaru \& H. Okazaki: TAN-93I, a novel nonsteroidal aromatase inhibitor produced by Penicillium funiculosum No. 8974. I. Taxonomy, fermentation, isolation, characterization and biological activities. J. Antibiotics 44: 589~599, 1991
2) Ballantine, J. A.; D. J. Francis, C. H. Hassall \& J. L. C. Wright: The biosynthesis of phenols. Part XXI. The molecular structure of arugosin, a metabolite of a wild-type strain of Aspergillus rugulosus. J. Chem. Soc. (C) 1970: 1175~1182, 1970
3) Bax, A. \& G. Morris: An improved method for heteronuclear chemical shift correlation by two-dimensional NMR. J. Magn. Reson. 42: 501~505, 1981
4) Kessler, H.; C. Griesinger, J. Zarbock \& H. R. Loosli: Assignment of carbonyl carbons and sequence analysis in peptides by heteronuclear shift correlation via small coupling constants with broadband decoupling in t_{1} (COLOC). J. Magn. Reson. 57: 331~336, 1984
5) Lindgren, B. O. \& T. Nilsson: Preparation of carboxylic acids from aldehydes (including hydroxylated benzaldehydes) by oxidation with chlorite. Acta Chim. Scand. 27: 888~890, 1973
6) Hashimoto, T.; M. Tori \& Y. Asakawa: Structure of new aromatic compounds isolated from ascocarps of a species of Xylariaceae. Abstracts of Papers 56th Annual Meeting of the Chemical Society of Japan, No. 1IM40, Kyoto, Apr. 1~4, 1989
7) Brodie, A. M. H.; W. M. Garrett, J. R. Hendrickson \& C.-H. Tsai-Morris: Effects of aromatase inhibitor 4-hydroxyandrostenedione and other compounds in the 7,12-dimethylbenz (a) anthracene-induced breast carcinoma model. Cancer Res. 42 (Suppl.): S3360~S3364, 1982
8) Santen, R. J.; S. Santner, B. Davis, J. Veldhuis, E. Samojlik \& E. Ruby: Aminoglutethimide inhibits extraglandular estrogen production in postmenopausal women with breast carcinoma. J. Clin. Endocrinol. Metab. 47: 1257~1265, 1978
9) Santen, R. J.; E. Samollik \& S. A. Wells: Resistance of the ovary to blockade of aromatization with
aminoglutethimide. J. Clin. Endocrinol. Metab. 51: 473~477, 1980
10) Kellis, J. T., Jr. \& L. E. Vickery: Inhibition of human estrogen synthetase (aromatase) by flavones. Science 225: 1032~1034, 1984
11) Kellis, J. T., Jr.; S. Nesnow \& L. E. Vickery: Inhibition of aromatase cytochrome P-450 (estrogen synthetase) by derivatives of α-naphthoflavone. Biochem. Pharmacol. 35: 2887~2891, 1986
12) Mason, J. I.; B. A. Murry, M. Olcott \& J. J. Sheets: Imidazole antimycotics: Inhibitors of steroid aromatase. Biochem. Pharmacol. 34: 1087~1092, 1985
13) Scheweck, K.; A. S. Bhatnagar \& A. Matter: CGS 16949A, a new nonsteroidal aromatase inhibitor: Effects on hormone-dependent and -independent tumors in vivo. Cancer Res. 48: 834~838, 1988
